Ans: We do not know whether or <
b(a+b) b a + b
∴ to compare these two number,
Let us comute a − a + 2b
b a + b
a2 −2b2
=> on simplifying , we get
b(a+b)
∴ a − a + 2b > 0 or a − a + 2b < 0 b a + b b a + b
now a − a + 2b > 0 b a + b
a2 −2b2 > 0 solve it , we get , a > √2b b(a+b)
Thus , when a > √2b and a a + 2b
< , b a + b
a + 2b √2< a
We have to prove that <
a + b b
Now a >√2 b⇒2a2+2b2>2b2+ a2+2b2
On simplifying we get
√2> a + 2b a + b
Also a>√2
>√2 b
Similarly we get √2, < a + 2b
a + b
Hence a <√2< a + 2b b a + b
b(a+b) b a + b
∴ to compare these two number,
Let us comute a − a + 2b
b a + b
a2 −2b2
=> on simplifying , we get
b(a+b)
∴ a − a + 2b > 0 or a − a + 2b < 0 b a + b b a + b
now a − a + 2b > 0 b a + b
a2 −2b2 > 0 solve it , we get , a > √2b b(a+b)
Thus , when a > √2b and a a + 2b
< , b a + b
a + 2b √2< a
We have to prove that <
a + b b
Now a >√2 b⇒2a2+2b2>2b2+ a2+2b2
On simplifying we get
√2> a + 2b a + b
Also a>√2
>√2 b
Similarly we get √2, < a + 2b
a + b
Hence a <√2< a + 2b b a + b
No comments:
Post a Comment